Warm up

Categorize the following numbers:

Functions can also be even or odd, but how can we tell?

Odd or Even?

•
$$f(x) = 5x^{4} + x^{2}$$

•
$$f(x) = x^{3} - 2x^{2}$$

•
$$f(x) = x^{6} - 2x^{4} + 5x^{2}$$
 • $f(x) = 6x^{5} + 7x^{3} - x^{0}$

•
$$f(x) = 6x^{5} + 7x^{3} - x^{5}$$

$$f(x) = 6x^{2} - 3$$

$$= 6x^{2} - 3x^{0}$$

•
$$f(x) = 14x^{3} + 5x^{0}$$

•
$$f(x) = x^{3} + 4x^{0} + 1$$

• $f(x) = 3x^{0} + x^{0} - 9x^{0}$

•
$$f(x) = 3x^{1} + x^{2} - 9x^{1}$$

•
$$f(x) = 10x^5 + x^3 - 3x^2 + 6$$

<u>Algebraically</u>

A function is even if

All of the exponents of the variable are even.

A function is <u>odd</u> if

All of the exponents of the variable are odd.

A function is <u>neither</u> if

The exponents are a mixture of odd and even

BEWARE OF CONSTANTS

All constants really have a x^0

XOIS

EVENUE NEW

1.
$$f(x) = 3x^{4} - 9x^{2} - 15$$
 even

2.
$$f(x) = 15x^{15} - 9x^7 - 8x^3 \text{ odd}$$

3.
$$f(x) = 8x^{(5)} - 7x^{(4)} + 9$$
 Neither

4.
$$f(x) = 5$$

5.
$$f(x) = 8x^{20} + 6x^{14} - 4x^{2} + 3$$

Graphically

A function is <u>even</u> if

The graph reflects across the y-axis

(Means you can fold it hotdog style and it would match up).

A function is <u>odd</u> if

The graph has 180° rotational symmetry about the **ORIGIN**

(Means you could turn it upside-down & it would still look the same. The graph <u>must</u> go through the <u>origin!!!</u>)

Tell whether the function is even, odd, or neither.

10.
$$f(x) = 5x^3$$

11.
$$f(x) = x^2 - 5$$

12.
$$f(x) = x^3 - 2x^2$$

13.
$$f(x) = -x^3 + x + 8$$
 14. $f(x) = x^4 - 3x^2$ **15.** $f(x) = x^3 + 8x$

14.
$$f(x) = x^4 - 3x^2$$

15.
$$f(x) = x^3 + 8x$$